9. Arterial pulse transit time evaluation by peripheral pulse wave measurement

R. Girčys1, E. Kazanavičius2, L. Obcarskas3

1, 2Real Time Computers System Center, Kaunas University of Technology, Kaunas, Lithuania

3The Mechatronics Centre for Research, Studies and Information,
Kaunas University of Technology, Kaunas, Lithuania

2Corresponding author

E-mail: 1rolandas.gircys@ktu.lt, 2linas.obcarskas@ktu.lt

(Received 28 January 2013; accepted 28 February 2013)

Abstract. Arterial pulse transit time (PTT) is a simple noninvasive diagnostic tool. However it is still requiring two processes ECG and photoplethysmogram to be measured. Object of this investigation is verifying hypothesis about velocity of the initial rise in peripheral pulse waveform (VIR) and arterial pulse transit time correlation. For verification this assumption modeling and five veloergonometric test was done. The results showed significant PTT and VIR correlation:
–93.4±5.6. Difference between mean values was ±0.1 and dispersion of VIR was less then PTT. New indices able to change PTT have been proposed. This method has powerful perspective for wearable arterial stiffness monitoring devices realization.

Keywords: arterial pulse wave velocity, pulse transit time, Hook’s low, photoplethysmography.


[1]        Stanley T. E., Reves J. G. Cardiovascular monitoring. Miller R. D., Anesthesia, New York, Churchill Livingstone, 1994, p. 1161‑1228.

[2]        Anlauf M., Tholl U., Hörge Rmeyer D., Hirche H., Roggenbruck U., Simonides R. Devices for blood pressure self-measurement: tested in comparison. Zeitschrift für Kardiologie, Vol. 3, 1996, p. 20‑25.

[3]        J. Lass, K. Meigas, D. Karai, R. Kattai, J. Kaik, M. Rossmann Continuous blood pressure monitoring during exercise using pulse wave transit time measurement. 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, 2004.

[4]        Cheng K. S., Baker C. R., Hamilton G., Hoeks A. P. G., Seifalian A. M. Arterial elastic properties and cardiovascular risk/event. Eur. J. Vasc. Endovasc. Surg., Vol. 24, 1999, p. 383‑397.

[5]        Moore D. F., Pursley R., Altarescu G., Schiffmann R., Dimitriadis E. Real time peripheral arterial flow and wall properties derived by pulse waveform analysis and B-mode imaging. CBMS '01 Proceedings of the Fourteenth IEEE Symposium on Computer-Based Medical Systems, DC, USA, Vol. 1, 2001, p. 216.

[6]        Meinders M. N., Hoekis A. P. G. Simultaneous assessment of diameter and pressure waveforms in the carotid artery. Ultrasound in Med. & Biol., Vol. 30, Issue 2, 2004, p. 147‑154.

[7]        Ottensen J. T., Danielsen M. Mathematical Modeling in Medicine. Amsterdam, IOS Press, 2000.

[8]        Westerhof N. et al. An artificial arterial system for pumping hearts. Journal of Applied Physiology, Vol. 31, 1971, p. 776‑781.

[9]        Diourte B., Siche J.-P., Comparat V., Baguet J.-P., Mallion J.-M. Study of arterial pressure by a Windkessel – type model: influence of arterial functional properties. Computer Methods and Programs in Biomedicine, Vol. 60, 1999, p. 11‑22.

[10]     Shadwic R. E. Mechanical design in arteries. The Journal of Experimental Biology, Vol. 202, 1999, p. 3305‑3313.

Cite this article

Girčys R., Kazanavičius E., Obcarskas L. Arterial pulse transit time evaluation by peripheral pulse wave measurement. Journal of Measurements in Engineering, Vol. 1, Issue 1, 2013, p. 52‑58.


Journal of Measurements in Engineering. March 2013, Volume 1, Issue 1
© Vibroengineering. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania