15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements

Simas Joneliunas1, Darius Gailius2, Stasys Vygantas Augutis3, Pranas Kuzas4

Kaunas University of Technology, Department of Electronics and Measurement Systems,
Measurement Technologies Laboratory, StudentÝ str. 50-445, LT-51368 Kaunas, Lithuania

1Corresponding author

E-mail: 1simas.joneliunas@stud.ktu.lt, 2darius.gailius@ktu.lt, 3vygantas.augutis@ktu.lt, 4pranas.kuzas@ktu.lt

(Received 12 April 2013; accepted 7 June 2013)

Abstract. In this paper we present a low power wireless network sensor module and its proof‑of‑concept. We analyze the energy consumption of the device on long term operation. Main goal of the simulation was to ascertain that the device will remain operational for 2 years, while working on set sleep/active mode conditions. Secondary objective was to test the synchronization possibilities of the sensor modules, since it is one of the key aspects of the energy consumption while considering multi-hop wireless networks.

Keywords: wireless sensor networks, low power networks, energy efficiency, Zigbee.

References

[1]        Willis L. S., Kikkert C. J. Radio propagation model for long-range ad hoc wireless sensor network. International Conference on Wireless Networks, Communications and Mobile Computing, 2005, p. 826‑832.

[2]        Chilibon I., Magoldea M., Mogildea G. Module with piezoelectric sensor for acoustic emission applications. Sensors & Transducers, Vol. 18, Special Issue, 2013, p. 59‑65.

[3]        Wesnarat A., Tipsuwan Y. A power efficient algorithm for data gathering from wireless water meter networks. IEEE International Conference on Industrial Informatics, 2006, p. 1024‑1029.

[4]        Naveen Pasupuleti H., Rao R., Selvakumar D., Srinivasan Reddy S. R. K. Energy aware self powered wireless sensor mote. Sixth International Conference on Sensing Technology (ICST), 2012, p. 630‑636.

[5]        Reddy A. M., Kumar P., Janakiram D., Kumar G. A. Operating systems for wireless sensor networks: a survey technical report. International Journal of Sensor Networks (IJSNet), Vol. 5, Issue 4, 2009, p. 236‑255.

[6]        TinyOS. 2013 05 16, http://tinyos.net/.

[7]        Salbaroli E., Zanella A. A statistical model for the evaluation of the distribution of the received power in ad hoc and wireless sensor networks. Sensor and Ad Hoc Communications and Networks, 2006, p. 756‑760.

[8]        Freris N. M., Kowshik H., Kumar P. R. Fundamentals of large sensor networks: connectivity, capacity, clocks and computation. Proceedings of the IEEE, Vol. 98, Issue 11, 2010, p. 1828‑1846.

[9]        Sichitiu M. L., Veerarittiphan C. Simple, accurate time synchronization for wireless sensor networks. Wireless Communications and Networking, 2003, p. 1266‑1273.

[10]     Raicu I., Schwiebert L., Fowler S., Gupta Sandeep K. S. E3D: an energy-efficient routing algorithm for wireless sensor networks. Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004, p. 25‑30.

[11]     Schurgers C., Srivastava M. B. Energy efficient routing in wireless sensor networks. Military Communications Conference, 2001, p. 357‑361.

Cite this article

Joneliunas Simas, Gailius Darius, Augutis Stasys Vygantas, Kuzas Pranas ZBM2: low power Zigbee wireless sensor module for low frequency measurements. Journal of Measurements in Engineering, Vol. 1, Issue 2, 2013, p. 95‑100.

 

Journal of Measurements in Engineering. June 2013, Volume 1, Issue 2
© Vibroengineering. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania