34. Piezoelectric actuation for microfluidic cell sorting

Mindaugas Juodėnas1, James D. Hoyland2, Vytautas Jurenas3, Algimantas Bubulis4

1, 3, 4Kaunas University of Technology, K. Donelaičio 73, LT-44029 Kaunas, Lithuania

2University of Southern Denmark, Alsion 2, DK-6400 Sønderborg, Denmark

1Corresponding author

E-mail: 1mind.juod@gmail.com, 2james@mci.sdu.dk

(Received 10 November 2013; accepted 8 December 2013)

Abstract. Since the field of microfluidics is vastly improving and developing, and piezoelectric actuators offer good control on a micrometer scale, this work was created as a combination of the two. A microfluidic chip with an embedded piezoelectric actuator was designed and constructed using polydimethylsiloxane as the main material. The chip was experimented on by varying both mechanical and electrical properties. Performance dependencies of volumetric flow rate and input waveform were described and analyzed. Moreover, beneficial phenomena were discovered and analyzed using high‑speed microscopy and digital image analysis. A situation where control of microfluidic flow direction could potentially be available was achieved. Other promising results showed new potential applications for piezoelectric actuation in microfluidic systems.

Keywords: piezoelectric actuation, microfluidics, cell sorting.


[1]        Kumar C. S. Microfluidic Devices in Nanotechnology. Hoboken, NJ, USA, Wiley, 2010.

[2]        DEPArray™. Silicon Biosystems, 2013, http://www.siliconbiosystems.com/deparray-technology-faqs

[3]        Flow Cytometry. Oregon State University, 2013, http://www.unsolvedmysteries.oregonstate.edu/ flow_06.

[4]        Magnetic-activated cell sorting. Meltenyi Biotech, 2013, https://www.miltenyibiotec.com/en.aspx.

[5]        Fluorescence activated cell sorting of live cells. Abcam, 2013 http://www.abcam.com/index.html? pageconfig=resource&rid=12803.

[6]        Thorlabs, http://www.thorlabs.com.

[7]        ImageJ, http://rsbweb.nih.gov/ij/.

[8]        Li M., Li S. B., Cao W. B., Li W. H., Wen W. J., Alici G. Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping. Microfluidics and Nanofluidics, 2013, p. 527‑539.

[9]        Murray C., McCoul D., Sollier E., Ruggiero T., Niu X. F., Pei Q. B., Di Carlo D. Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators. Microfluidics and Nanofluidics, 2013, p. 345‑358.

[10]     Nawarathna D., Norouzi N., McLane J., Sharma H., Sharac N., Grant T., Khine M. Shrink-induced sorting using integrated nanoscale magnetic traps. Applied Physics Letters, 2013.

[11]     Song Y. X., Peng R., Wang J. S., Pan X. X., Sun Y. Q., Li D. Q. Automatic particle detection and sorting in an electrokinetic microfluidic chip. Electrophoresis, 2013, p. 684‑690.

[12]     Qing-Hua Q. Advanced Mechanics of Piezoelectricity. Springer, Berlin, Heidelberg, 2013.

Cite this article

Juodėnas Mindaugas, Hoyland James D., Jurenas Vytautas, Bubulis Algimantas Piezoelectric actuation for microfluidic cell sorting. Journal of Measurements in Engineering, Vol. 1, Issue 4, 2013, p. 228‑232.


Journal of Measurements in Engineering. December 2013, Volume 1, Issue 4
© Vibroengineering. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania